CORTEX: Concept-Oriented Token Explanation in Vector-Quantized Generative Model

ICLR 2025 Conference Submission2258 Authors

21 Sept 2024 (modified: 13 Oct 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Vector-Quantized Generative Model, Explainability, Information Bottleneck
Abstract: Vector-Quantized Generative Models (VQGMs) have emerged as powerful tools for image generation. However, the key component of VQGMs---the codebook of discrete tokens---is still not well understood, e.g., which tokens are critical to generate an image of a certain concept? This paper introduces Concept-Oriented Token Explanation (CORTEX), a novel approach for interpreting VQGMs by identifying concept-specific token combinations. Our framework employs two methods: (1) a saliency-based method that analyzes token saliency value in individual images, and (2) an optimization-based method that explores the entire codebook to find globally relevant tokens. Experimental results demonstrate CORTEX's efficacy in providing clear explanations of token usage in the generative process, outperforming baselines across multiple pretrained VQGMs. CORTEX not only improves VQGM transparency but also enables tasks such as targeted image editing, offering valuable insights into the model's internal representations.
Primary Area: interpretability and explainable AI
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2258
Loading