Abstract: Besides natural language processing, transformers exhibit extraordinary performance in solving broader applications, including scientific computing and computer vision. Previous works try to explain this from the expressive power and capability perspectives that standard transformers are capable of performing some algorithms. To empower transformers with algorithmic capabilities and motivated by the recently proposed looped transformer (Yang et al., 2024; Giannou et al., 2023), we design a novel transformer framework, dubbed Algorithm Transformer (abbreviated as AlgoFormer). We provide an insight that efficient transformer architectures can be designed by leveraging prior knowledge of tasks and the underlying structure of potential algorithms. Compared with the standard transformer and vanilla looped transformer, the proposed AlgoFormer can perform efficiently in algorithm representation in some specific tasks. In particular, inspired by the structure of human-designed learning algorithms, our transformer framework consists of a pre-transformer that is responsible for task preprocessing, a looped transformer for iterative optimization algorithms, and a post-transformer for producing the desired results after post-processing. We provide theoretical evidence of the expressive power of the AlgoFormer in solving some challenging problems, mirroring human-designed algorithms. Furthermore, some theoretical and empirical results are presented to show that the designed transformer has the potential to perform algorithm representation and learning. Experimental results demonstrate the empirical superiority of the proposed transformer in that it outperforms the standard transformer and vanilla looped transformer in some specific tasks. An extensive experiment on real language tasks (e.g., neural machine translation of German and English, and text classification) further validates the expressiveness and effectiveness of AlgoFormer.
Submission Length: Regular submission (no more than 12 pages of main content)
Code: https://github.com/chuanyang-Zheng/Algoformer
Assigned Action Editor: ~Xingyou_Song1
Submission Number: 3524
Loading