Magnushammer: A Transformer-Based Approach to Premise Selection

Published: 16 Jan 2024, Last Modified: 15 Apr 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: transformers, interactive theorem proving, automated reasoning, contrastive learning, premise selection
Submission Guidelines: I certify that this submission complies with the submission instructions as described on
TL;DR: Contrastively trained transformers outperform state-of-the-art symbolic methods for premise selection, a challenging reasoning task of selecting relevant facts for proving new theorems in formal mathematics.
Abstract: This paper presents a novel approach to premise selection, a crucial reasoning task in automated theorem proving. Traditionally, symbolic methods that rely on extensive domain knowledge and engineering effort are applied to this task. In contrast, this work demonstrates that contrastive training with the transformer architecture can achieve higher-quality retrieval of relevant premises, without the knowledge or feature engineering overhead. Our method, Magnushammer, outperforms the most advanced and widely used automation tool in interactive theorem proving called Sledgehammer. On the PISA and miniF2f benchmarks Magnushammer achieves $59.5\%$ (against $38.3\%$) and $34.0\%$ (against $20.9\%$) success rates, respectively. By combining Magnushammer with a language-model-based automated theorem prover, we further improve the state-of-the-art proof success rate from $57.0\%$ to $71.0\%$ on the PISA benchmark using $4$x fewer parameters. Moreover, we develop and open source a novel dataset for premise selection, containing textual representations of (proof state, relevant premise) pairs. To the best of our knowledge, this is the largest available premise selection dataset, and the first dataset of this kind for the Isabelle proof assistant.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: neurosymbolic & hybrid AI systems (physics-informed, logic & formal reasoning, etc.)
Submission Number: 5319