Unlocking Trilevel Learning with Level-Wise Zeroth Order Constraints: Distributed Algorithms and Provable Non-Asymptotic Convergence
Keywords: Trilevel Optimization, Distributed Optimization, Zeroth Order Optimization
Abstract: Trilevel learning (TLL) found diverse applications in numerous machine learning applications, ranging from robust hyperparameter optimization to domain adaptation. However, existing researches primarily focus on scenarios where TLL can be addressed with first order information available at each level, which is inadequate in many situations involving zeroth order constraints, such as when black-box models are employed. Moreover, in trilevel learning, data may be distributed across various nodes, necessitating strategies to address TLL problems without centralizing data on servers to uphold data privacy. To this end, an effective distributed trilevel zeroth order learning framework DTZO is proposed in this work to address the TLL problems with level-wise zeroth order constraints in a distributed manner. The proposed DTZO is versatile and can be adapted to a wide range of (grey-box) TLL problems with partial zeroth order constraints. In DTZO, the cascaded polynomial approximation can be constructed without relying on gradients or sub-gradients, leveraging a novel cut, i.e., zeroth order cut. Furthermore, we theoretically carry out the non-asymptotic convergence rate analysis for the proposed DTZO in achieving the $\epsilon$-stationary point. Extensive experiments have been conducted to demonstrate and validate the superior performance of the proposed DTZO, e.g., it approximately achieves up to a 40\% improvement in performance.
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13705
Loading