Faster Hyperparameter Search for GNNs via Calibrated Dataset CondensationDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: Graph Condensation, Dataset Condensation, Hyperparameter Optimization, Graph Neural Networks, Graph Compression
TL;DR: We propose a novel hyperparameter-calibrated dataset condensation (HCDC) algorithm, which can be applied to speed up hyperparameter optimization on graphs.
Abstract: Dataset condensation aims to reduce the computational cost of training multiple models on a large dataset by condensing the training dataset into a small synthetic set. State-of-the-art approaches rely on matching the model gradients for the real and synthetic data and have recently been applied to condense large-scale graphs for node classification tasks. Although dataset condensation may be efficient when training multiple models for hyperparameter optimization, there is no theoretical guarantee on the generalizability of the condensed data: data condensation often generalizes poorly across hyperparameters/architectures in practice, while we find and prove this overfitting is much more severe on graphs. In this paper, we consider a different condensation objective specifically geared towards hyperparameter search. We aim to generate the synthetic dataset so that the validation-performance rankings of the models, with different hyperparameters, on the condensed and original datasets are comparable. We propose a novel hyperparameter-calibrated dataset condensation algorithm, which obtains the synthetic validation data by matching the hyperparameter gradients computed via implicit differentiation and efficient inverse Hessian approximation. HCDC employs a supernet with differentiable hyperparameters, making it suitable for modeling GNNs with widely different convolution filters. Experiments demonstrate that the proposed framework effectively maintains the validation-performance rankings of GNNs and speeds up hyperparameter/architecture search on graphs.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
5 Replies

Loading