Keywords: catastrophic forgetting; language models
TL;DR: We analyze and predict associations between learned tasks and forgotten examples in large language models.
Abstract: Large Language models (LLMs) suffer from forgetting of upstream data when fine-tuned. Despite efforts on mitigating forgetting, few have investigated whether, and how forgotten upstream examples are dependent on and associated with newly learned tasks. Insights on such associations enable efficient and targeted mitigation of forgetting. In this paper, we empirically analyze forgetting (measured in log-perplexity increase) that occurs in $N$ upstream examples of language modeling or instruction-tuning after fine-tuning LLMs on one of $M$ new tasks, visualized in $M\times N$ matrices. We demonstrate that the matrices display simple low-rank patterns, often well-approximated with multiplicative scalar effects of upstream examples and newly learned tasks. We also examine fine-grained associations with visualization and statistics. Leveraging the low-rank nature of the associations, we predict forgetting of upstream examples when fine-tuning on unseen tasks with matrix completion over the empirical associations. This enables fast identification of most forgotten examples without expensive inference on the entire upstream data. The approach, despite simplicity, outperforms prior approaches that learn semantic relationships of learned tasks and upstream examples with LMs for predicting forgetting. We demonstrate the practical utility of our analysis by showing statistically significantly reduced forgetting as we upweight predicted examples for replay at fine-tuning.
Primary Area: transfer learning, meta learning, and lifelong learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2780
Loading