Keywords: Large Language Models, Long Context, Reinforcement Learning with Verifiable Rewards
TL;DR: RLVR for improving long-context capabilities.
Abstract: Reinforcement Learning with Verifiable Rewards (RLVR) has significantly advanced the reasoning capabilities of Large Language Models (LLMs) by optimizing them against factual outcomes. However, this paradigm falters in long-context scenarios, as its reliance on internal parametric knowledge is ill-suited for tasks requiring contextual grounding—the ability to find and reason over externally provided information. We identify a key reason for this failure: a reward based solely on the final answer is too sparse to effectively guide the model for identifying relevant evidence. We formally prove that the outcome-only reward leads to exponentially vanishing gradients for the context grounding process, rendering learning intractable. To overcome this bottleneck, we introduce LongRLVR to augment the sparse answer reward with a dense and verifiable context reward. This auxiliary signal directly incentivizes the model for selecting the correct grounding information, providing a robust learning gradient that solves the underlying optimization challenge. We validate our method on challenging long-context benchmarks using Qwen and LLaMA models. LongRLVR consistently and significantly outperforms the standard RLVR across all models and benchmarks, e.g., boosting a 14B model's scores on RULER-QA from 73.17 to 88.90 and on LongBench v2 from 39.8 to 46.5. Our work demonstrates that explicitly rewarding the grounding process is a critical and effective strategy for unlocking the full reasoning potential of LLMs in long-context applications.
Primary Area: foundation or frontier models, including LLMs
Submission Number: 18164
Loading