Improving Consistency Models with Generator-Induced Flows

27 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: generative models, diffusion models, flow models, consistency models
TL;DR: Generator-induced flows improve consistency training by alleviating an error term and reducing noise-data transport cost.
Abstract: Consistency models imitate the multi-step sampling of score-based diffusion in a single forward pass of a neural network. They can be learned in two ways: consistency distillation and consistency training. The former relies on the true velocity field of the corresponding differential equation, approximated by a pre-trained neural network. In contrast, the latter uses a single-sample Monte Carlo estimate of this velocity field. The related estimation error induces a discrepancy between consistency distillation and training that, we show, still holds in the continuous-time limit. To alleviate this issue, we propose a novel flow that transports noisy data towards their corresponding outputs derived from the currently trained model - as a proxy of the true flow. Our empirical findings demonstrate that this approach mitigates the previously identified discrepancy. Furthermore, we present theoretical and empirical evidence indicating that our generator-induced flow surpasses dedicated optimal transport-based consistency models in effectively reducing the noise-data transport cost. Consequently, our method not only accelerates consistency training convergence but also enhances its overall performance.
Supplementary Material: zip
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9832
Loading