Keywords: Spatial Transcriptomics, Computational Pathology, Medical Image Analysis
TL;DR: In this paper, we introduce MagNet, a multi-level attention graph network designed for accurate prediction of high-resolution spatial transcriptomics.
Abstract: The rapid development of spatial transcriptomics (ST) offers new opportunities to explore the gene expression patterns within the spatial microenvironment. Current research integrates pathological images to infer gene expression, addressing the high costs and time-consuming processes to generate spatial transcriptomics data. However, as spatial transcriptomics resolution continues to improve, existing methods remain primarily focused on gene expression prediction at low-resolution (55𝜇m) spot levels. These methods face significant challenges, especially the information bottleneck, when they are applied to high-resolution (8𝜇m) HD data. To bridge this gap, this paper introduces MagNet, a multi-level attention graph network designed for accurate prediction of high-resolution HD data. MagNet employs cross-attention layers to integrate features from multi-resolution image patches hierarchically and utilizes a GAT-Transformer module to aggregate neighborhood information. By integrating multilevel features, MagNet overcomes the limitations posed by low-resolution inputs in predicting high-resolution gene expression. We systematically evaluated MagNet and existing ST prediction models on both a private spatial transcriptomics dataset and a public dataset at three different resolution levels. The results demonstrate that MagNet achieves state-of-the-art performance at both spot level and high-resolution bin levels, providing a novel methodology and benchmark for future research and applications in high-resolution HD-level spatial transcriptomics. Code is available at https://github.com/Junchao-Zhu/MagNet.
Primary Subject Area: Application: Histopathology
Secondary Subject Area: Application: Other
Paper Type: Both
Registration Requirement: Yes
Reproducibility: https://github.com/Junchao-Zhu/MagNet
Visa & Travel: Yes
Midl Latex Submission Checklist: Ensure no LaTeX errors during compilation., Created a single midl25_NNN.zip file with midl25_NNN.tex, midl25_NNN.bib, all necessary figures and files., Includes \documentclass{midl}, \jmlryear{2025}, \jmlrworkshop, \jmlrvolume, \editors, and correct \bibliography command., Did not override options of the hyperref package, Did not use the times package., All authors and co-authors are correctly listed with proper spelling and avoid Unicode characters., Author and institution details are de-anonymized where needed. All author names, affiliations, and paper title are correctly spelled and capitalized in the biography section., References must use the .bib file. Did not override the bibliographystyle defined in midl.cls. Did not use \begin{thebibliography} directly to insert references., Tables and figures do not overflow margins; avoid using \scalebox; used \resizebox when needed., Included all necessary figures and removed *unused* files in the zip archive., Removed special formatting, visual annotations, and highlights used during rebuttal., All special characters in the paper and .bib file use LaTeX commands (e.g., \'e for é)., Appendices and supplementary material are included in the same PDF after references., Main paper does not exceed 9 pages; acknowledgements, references, and appendix start on page 10 or later.
Latex Code: zip
Copyright Form: pdf
Submission Number: 10
Loading