DEFENDING BACKDOOR ATTACKS VIA ROBUSTNESS AGAINST NOISY LABELDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: Backdoor Attack, Deep Learning, Data Poisoning, Noisy Label
TL;DR: We propose a principled approach to defend the backdoor attack by using existed robust algorithm against label noise.
Abstract: Many deep neural networks are vulnerable to backdoor poisoning attacks, in which an adversary strategically injects a backdoor trigger into a small fraction of the training data. The trigger can later be applied during inference to manipulate prediction labels. While the data label could be changed to arbitrary values by an adversary, the extent of corruption injected into the feature values is strictly limited to keep the backdoor attack in disguise, which leads to a resemblance between the backdoor attack and a milder attack that involves only noisy labels. This paper investigates an intriguing question: \textit{Can we leverage algorithms that defend against noisy label corruptions to defend against general backdoor attacks?} We first discuss the limitations of directly using current noisy-label defense algorithms to defend against backdoor attacks. We then propose a meta-algorithm for both supervised and semi-supervised settings that transforms an existing noisy label defense algorithm into one that protects against backdoor attacks. Extensive experiments on different settings show that, by introducing a lightweight alteration for minimax optimization to the existing noisy-label defense algorithms, the robustness against backdoor attacks can be substantially improved, while the initial form of those algorithms would fail in the presence of a backdoor attack.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
Supplementary Material: zip
5 Replies

Loading