Keywords: protein generation, protein-ligand interaction, protein binder design
TL;DR: We propose AtomFlow, a novel deep generative model under the flow-matching framework for the design of ligand-binding proteins from the 2D target molecular graph alone.
Abstract: Designing novel proteins that bind to small molecules is a long-standing challenge in computational biology, with applications in developing catalysts, biosensors, and more. Current computational methods rely on the assumption that the binding pose of the target molecule is known, which is not always feasible, as conformations of novel targets are often unknown and tend to change upon binding. In this work, we formulate proteins and molecules as unified biotokens, and present AtomFlow, a novel deep generative model under the flow-matching framework for the design of ligand-binding proteins from the 2D target molecular graph alone. Operating on representative atoms of biotokens, AtomFlow captures the flexibility of ligands and generates ligand conformations and protein backbone structures iteratively. We consider the multi-scale nature of biotokens and demonstrate that AtomFlow can be effectively trained on a subset of structures from the Protein Data Bank, by matching flow vector field using an SE(3) equivariant structure prediction network. Experimental results show that our method can generate high-fidelity ligand-binding proteins and achieve performance comparable to the state-of-the-art model RFDiffusionAA, while not requiring bound ligand structures. As a general framework, AtomFlow holds the potential to be applied to various biomolecule generation tasks in the future.
Supplementary Material: zip
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4348
Loading