A Versatile Influence Function for Data Attribution with Non-Decomposable Loss

26 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: influence function, data attribution
Abstract: Influence function, a technique rooted in robust statistics, has been adapted in modern machine learning for a novel application: data attribution---quantifying how individual training data points affect a model's predictions. However, the common derivation of influence functions in the data attribution literature is limited to loss functions that decompose into a sum of individual data point losses, with the most prominent examples known as M-estimators. This restricts the application of influence functions to more complex learning objectives, which we refer to as non-decomposable losses, such as contrastive or ranking losses, where a unit loss term depends on multiple data points and cannot be decomposed further. In this work, we bridge this gap by revisiting the general formulation of influence function from robust statistics, which extends beyond M-estimators. Based on this formulation, we propose a novel method, the Versatile Influence Function (VIF), that can be straightforwardly applied to machine learning models trained with any non-decomposable loss. In comparison to the classical approach in statistics, the proposed VIF is designed to fully leverage the power of auto-differentiation, hereby eliminating the need for case-specific derivations of each loss function. We demonstrate the effectiveness of VIF across three examples: Cox regression for survival analysis, node embedding for network analysis, and listwise learning-to-rank for information retrieval. In all cases, the influence estimated by VIF closely resembles the results obtained by brute-force leave-one-out retraining, while being up to 1000 times faster to compute. We believe VIF represents a significant advancement in data attribution, enabling efficient influence-function-based attribution across a wide range of machine learning paradigms, with broad potential for practical use cases.
Supplementary Material: zip
Primary Area: interpretability and explainable AI
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7674
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview