Near-Optimal Quantum Algorithm for Minimizing the Maximal Loss

Published: 16 Jan 2024, Last Modified: 12 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Quantum Algorithms, Quantum Query Complexity, Convex Optimization, Minimizing Loss
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We conduct a systematic study of quantum algorithms and lower bounds for minimizing the maximum of $N$ convex, Lipschitz functions.
Abstract: The problem of minimizing the maximum of $N$ convex, Lipschitz functions plays significant roles in optimization and machine learning. It has a series of results, with the most recent one requiring $O(N\epsilon^{-2/3} + \epsilon^{-8/3})$ queries to a first-order oracle to compute an $\epsilon$-suboptimal point. On the other hand, quantum algorithms for optimization are rapidly advancing with speedups shown on many important optimization problems. In this paper, we conduct a systematic study of quantum algorithms and lower bounds for minimizing the maximum of $N$ convex, Lipschitz functions. On one hand, we develop quantum algorithms with an improved complexity bound of $\tilde{O}(\sqrt{N}\epsilon^{-5/3} + \epsilon^{-8/3})$. On the other hand, we prove that quantum algorithms must take $\tilde{\Omega}(\sqrt{N}\epsilon^{-2/3})$ queries to a first-order quantum oracle, showing that our dependence on $N$ is optimal up to poly-logarithmic factors.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: optimization
Submission Number: 5095
Loading