SpeedE: Euclidean Geometric Knowledge Graph Embedding Strikes BackDownload PDF

Anonymous

16 Oct 2023ACL ARR 2023 October Blind SubmissionReaders: Everyone
Abstract: Geometric knowledge graph embedding models (gKGEs) have shown great potential for knowledge graph completion (KGC), i.e., automatically predicting missing triples. However, contemporary gKGEs require high embedding dimensionalities or complex embedding spaces for good KGC performance, drastically limiting their space and time efficiency. Facing these challenges, we propose SpeedE, a lightweight Euclidean gKGE that (1) provides strong inference capabilities, (2) is competitive with state-of-the-art gKGEs, even significantly outperforming them on WN18RR, and (3) dramatically increases their efficiency, in particular, needing solely a fifth of the training time and a fourth of the parameters of the state-of-the-art ExpressivE model on WN18RR to reach the same KGC performance.
Paper Type: long
Research Area: Efficient/Low-Resource Methods for NLP
Contribution Types: Approaches to low-resource settings, Approaches low compute settings-efficiency, Publicly available software and/or pre-trained models
Languages Studied: English
Consent To Share Submission Details: On behalf of all authors, we agree to the terms above to share our submission details.
0 Replies

Loading