Keywords: Evolutionary computation, Granular-ball
Abstract: Optimization problems aim to find the optimal solution, which is becoming increasingly complex and difficult to solve. Traditional evolutionary optimization methods always overlook the granular characteristics of solution space. In the real scenario of numerous optimization, the solution space is typically partitioned into sub-regions characterized by varying degree distributions. These sub-regions present different granularity characteristics at search potential and difficulty. Considering the granular characteristics of the solution space, the number of coarse-grained regions is smaller than the number of points, so the calculation is more efficient. On the other hand, coarse-grained characteristics are not easily affected by fine-grained sample points, so the calculation is more robust. To this end, this paper proposes a new multi-granularity evolutionary optimization method, namely Granular-ball Optimization (GBO) algorithm, which characterizes and searches the solution space from coarse to fine. Specifically, using granular-balls instead of traditional points for optimization increases the diversity and robustness of the random search process. At the same time, the search range in different iteration processes is limited by the radius of granular-balls, covering the solution space from large to small. And the mechanism of granular-ball splitting is applied to continuously split and evolve the large granular-balls into smaller for refining the solution space. Extensive experiments on commonly used benchmarks have shown that GBO outperforms popular and advanced evolutionary algorithms. The code is available in the Supplementary Materials.
Supplementary Material: zip
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 78
Loading