Node Importance Specific Meta Learning in Graph Neural NetworksDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: Meta Learning, Graph Neural Network, Node Importance
TL;DR: This paper focuses on the few-shot node classification problem in graph; theoretically studies the influence of node importance on the model accuracy and proposes a node importance calculation method to implement on meta learning GNNs.
Abstract: While current node classification methods for graphs have enabled significant progress in many applications, they rely on abundant labeled nodes for training. In many real-world datasets, nodes for some classes are always scarce, thus current algorithms are ill-equipped to handle these few-shot node classes. Some meta learning approaches for graphs have demonstrated advantages in tackling such few-shot problems, but they disregard the impact of node importance on a task. Being exclusive to graph data, the dependencies between nodes convey vital information for determining the importance of nodes in contrast to node features only, which poses unique challenges here. In this paper, we investigate the effect of node importance in node classification meta learning tasks. We first theoretically analyze the influence of distinguishing node importance on the lower bound of the model accuracy. Then, based on the theoretical conclusion, we propose a novel Node Importance Meta Learning architecture (NIML) that learns and applies the importance score of each node for meta learning. Specifically, after constructing an attention vector based on the interaction between a node and its neighbors, we train an importance predictor in a supervised manner to capture the distance between node embedding and the expectation of same-class embedding. Extensive experiments on public datasets demonstrate the state-of-the-art performance of NIML on few-shot node classification problems.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
Supplementary Material: zip
21 Replies

Loading