Learning K-U-Net in Constant Complexity with Application to Time Series Forecasting

19 Sept 2024 (modified: 22 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: machine learning, time series, complexity reduction
Abstract: Training deep models for time series forecasting is a critical task with an inherent challenge of time complexity. While current methods generally ensure linear time complexity, our observations on temporal redundancy show that high-level features are learned 99.5\% slower than low-level features. To address this issue, we introduce a new exponentially weighted stochastic gradient descent algorithm designed to achieve constant time complexity in deep learning models. We prove that the theoretical complexity of this learning method is constant. Evaluation of this method on Kernel U-Net (K-U-Net) on synthetic datasets shows a significant reduction in complexity while improving the accuracy of the test set.
Supplementary Material: zip
Primary Area: learning on time series and dynamical systems
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1818
Loading