Abstract: Combining reinforcement learning with language grounding is challenging as the agent needs to explore the environment while simultaneously learning multiple language-conditioned tasks. To address this, we introduce a novel method: the compositionally-enabled reinforcement learning language agent (CERLLA). Our method reduces the sample complexity of tasks specified with language by leveraging compositional policy representations and a semantic parser trained using reinforcement learning and in-context learning. We evaluate our approach in an environment requiring function approximation and demonstrate compositional generalization to novel tasks. Our method significantly outperforms the previous best non-compositional baseline in terms of sample complexity on 162 tasks designed to test compositional generalization. Our model attains a higher success rate and learns in fewer steps than the non-compositional baseline. It reaches a success rate equal to an oracle policy's upper-bound performance of 92%. With the same number of environment steps, the baseline only reaches a success rate of 80%.
Submission Length: Regular submission (no more than 12 pages of main content)
Assigned Action Editor: ~Yonatan_Bisk1
Submission Number: 3349
Loading