SCAN: Bootstrapping Contrastive Pre-training for Data Efficiency

27 Sept 2024 (modified: 13 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Contrastive Pre-Training, Data Efficiency
Abstract: While contrastive pre-training is widely employed, its data efficiency problem has remained relatively under-explored thus far. Existing methods often rely on static coreset selection algorithms to pre-identify important data for training. However, this static nature renders them unable to dynamically track the data usefulness throughout pre-training, leading to subpar pre-trained models. To address this challenge, our paper introduces a novel dynamic bootstrapping dataset pruning method. It involves pruning data preparation followed by dataset mutation operations, both of which undergo iterative and dynamic updates. We apply this method to two prevalent contrastive pre-training frameworks: CLIP and MoCo, representing vision-language and vision-centric domains, respectively. In particular, we individually pre-train seven CLIP models on two large-scale image-text pair datasets, and two MoCo models on the ImageNet dataset, resulting in a total of 16 pre-trained models. With a data pruning rate of 30-35% across all 16 models, our method exhibits only marginal performance degradation (less than 1% on average) compared to corresponding models trained on the full dataset counterparts across various downstream datasets, and also surpasses several baselines with a large performance margin. Additionally, the byproduct from our method, i.e., coresets derived from the original datasets after pre-training, also demonstrates significant superiority in terms of downstream performance over other coreset selection approaches.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Supplementary Material: zip
Submission Number: 8869
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview