Gradient Variance Reveals Failure Modes in Flow-Based Generative Models

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 spotlightEveryoneRevisionsBibTeXCC BY 4.0
Keywords: CFM, Rectified Flows, Generative AI
TL;DR: The paper shows that Rectified Flows trained with deterministic interpolants memorize training pairings.
Abstract: Rectified Flows learn ODE vector fields whose trajectories are straight between source and target distributions, enabling near one-step inference. We show that this straight-path objective reveals fundamental failure modes: under deterministic training, low gradient variance drives memorization of arbitrary training pairings, even when interpolant lines between training pairs intersect. To analyze this mechanism, we study Gaussian-to-Gaussian transport and use the loss gradient variance across stochastic and deterministic regimes to characterize which vector fields optimization favors in each setting. We then show that, in a setting where all interpolating lines intersect, applying Rectified Flow yields the same specific pairings at inference as during training. More generally, we prove that a memorizing vector field exists even when training interpolants intersect, and that optimizing the straight-path objective converges to this ill-defined field. At inference, deterministic integration reproduces the exact training pairings. We validate our findings empirically on the CelebA dataset, confirming that deterministic interpolants induce memorization, while the injection of small noise restores generalization.
Supplementary Material: zip
Primary Area: Deep learning (e.g., architectures, generative models, optimization for deep networks, foundation models, LLMs)
Submission Number: 9087
Loading