Automatically Generating Visual Hallucination Test Cases for Multimodal Large Language Models

27 Sept 2024 (modified: 14 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Hallucination, multimodal large language models
TL;DR: An automated method for expanding visual hallucination test cases for multimodal large language models.
Abstract: Visual hallucination (VH) occurs when a multimodal large language model (MLLM) generates responses with incorrect visual details for prompts. Existing methods for generating VH test cases primarily rely on human annotations, typically in the form of triples: (image, question, answer). In this paper, we introduce VHExpansion, the first automated method for expanding VH test cases for MLLMs. Given an initial VH test case, VHExpansion automatically expands it by perturbing the question and answer through negation as well as modifying the image using both common and adversarial perturbations. Additionally, we propose a new evaluation metric, symmetric accuracy, which measures the proportion of correctly answered VH test-case pairs. Each pair consists of a test case and its negated counterpart. Our theoretical analysis shows that symmetric accuracy is an unbiased evaluation metric that remains unaffected by the imbalance of VH testing cases with varying answers when an MLLM is randomly guessing the answers, whereas traditional accuracy is prone to such imbalance. We apply VHExpansion to expand three VH datasets annotated manually and use these expanded datasets to benchmark seven MLLMs. Our evaluation shows that VHExpansion effectively identifies more VH test cases. Moreover, symmetric accuracy, being unbiased, leads to different conclusions about the vulnerability of MLLMs to VH compared to traditional accuracy metric. Finally, we show that fine-tuning MLLMs on the expanded VH dataset generated by VHExpansion mitigates VH more effectively than fine-tuning on the original, manually annotated dataset. We will publish code and data upon paper acceptance.
Primary Area: datasets and benchmarks
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 11489
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview