Taking a Step Back with KCal: Multi-Class Kernel-Based Calibration for Deep Neural NetworksDownload PDF

Published: 01 Feb 2023, Last Modified: 27 Feb 2023ICLR 2023 posterReaders: Everyone
Keywords: Calibration, Kernel Density Estimation, Neural Networks, Healthcare, Classification
Abstract: Deep neural network (DNN) classifiers are often overconfident, producing miscalibrated class probabilities. In high-risk applications like healthcare, practitioners require fully calibrated probability predictions for decision-making. That is, conditioned on the prediction vector, every class’ probability should be close to the predicted value. Most existing calibration methods either lack theoretical guarantees for producing calibrated outputs, reduce classification accuracy in the process, or only calibrate the predicted class. This paper proposes a new Kernel-based calibration method called KCal. Unlike existing calibration procedures, KCal does not operate directly on the logits or softmax outputs of the DNN. Instead, KCal learns a metric space on the penultimate-layer latent embedding and generates predictions using kernel density estimates on a calibration set. We first analyze KCal theoretically, showing that it enjoys a provable full calibration guarantee. Then, through extensive experiments across a variety of datasets, we show that KCal consistently outperforms baselines as measured by the calibration error and by proper scoring rules like the Brier Score.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
TL;DR: Provable full calibration for neural network classifiers using kernel density estimation.
Supplementary Material: zip
13 Replies