Abstract: —Graph models and graph-based signals are becoming increasingly important in machine learning, natural sciences, and modern signal processing. In this paper, we address the problem of quantizing bandlimited graph signals. We introduce two classes of noise-shaping algorithms for graph signals that differ in their sampling methodologies. We demonstrate that these algorithms can be efficiently used to construct quantized representatives of bandlimited graph-based signals with bounded amplitude. Moreover, for one of the algorithms, we provide theoretical guarantees on the relative error between the quantized representative and the true signal.
Submission Type: Full Paper
0 Replies
Loading