Keywords: Transformer, RNN, Generalization Bounds, Statistical Separations, Sample Complexity
TL;DR: We prove a purely statistical separation between Transformers and other architectures such as feedforward and recurrent networks, where Transformers are more sample-efficient at learning sparse sequence models
Abstract: Theoretical efforts to prove advantages of Transformers in comparison with classical architectures such as feedforward and recurrent neural networks have mostly focused on representational power. In this work, we take an alternative perspective and prove that even with infinite compute, feedforward and recurrent networks may suffer from larger sample complexity compared to Transformers, as the latter can adapt to a form of dynamic sparsity. Specifically, we consider a sequence-to-sequence data generating model on sequences of length $N$, where the output at each position only depends on $q \ll N$ relevant tokens, and the positions of these tokens are described in the input prompt. We prove that a single-layer Transformer can learn this model if and only if its number of attention heads is at least $q$, in which case it achieves a sample complexity almost independent of $N$, while recurrent networks require $N^{\Omega(1)}$ samples on the same problem. If we simplify this model, recurrent networks may achieve a complexity almost independent of $N$, while feedforward networks still require $N$ samples. Our proposed sparse retrieval model illustrates a natural hierarchy in sample complexity across these architectures.
Student Paper: Yes
Submission Number: 91
Loading