Keywords: Discrete diffusion model, Convergence analysis, Time-discretization, Discrete score function
Abstract: Diffusion models have achieved great success in generating high-dimensional samples across various applications. While the theoretical guarantees for continuous-state diffusion models have been extensively studied, the convergence analysis of the discrete-state counterparts remains under-explored. In this paper, we study the theoretical aspects of score-based discrete diffusion models under the Continuous Time Markov Chain (CTMC) framework. We introduce a discrete-time sampling algorithm in the general state space $[S]^d$ that utilizes score estimators at predefined time points. We derive convergence bounds for the Kullback-Leibler (KL) divergence and total variation (TV) distance between the generated sample distribution and the data distribution, considering both scenarios with and without early stopping under reasonable assumptions. Notably, our KL divergence bounds are nearly linear in the dimension $d$, aligning with state-of-the-art results for diffusion models. Our convergence analysis employs a Girsanov-based method and establishes key properties of the discrete score function, which are essential for characterizing the discrete-time sampling process.
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9829
Loading