A Partition Cover Approach to Tokenization

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: tokenization, large language models
Abstract: Tokenization is the process of encoding strings into tokens of a fixed vocabulary size, and is widely utilized in Natural Language Processing applications. The leading tokenization algorithm today is Byte Pair Encoding (BPE), which formulates the tokenization problem as a compression problem and tackles it by performing sequences of merges. In this work, we formulate tokenization as an optimization objective, show that it is NP-hard via a simple reduction from vertex cover, and propose a polynomial-time greedy algorithm GreedTok. Our formulation naturally relaxes to the well-studied weighted maximum coverage problem which has a simple $(1 - 1/e)$-approximation algorithm GreedWMC. Through empirical evaluations on real-world corpora, we show that GreedTok outperforms BPE and Unigram on compression and achieves a covering score comparable to GreedWMC. Finally, our extensive pre-training for two transformer-based language models with 1 billion parameters, comparing the choices of BPE and GreedTok as the tokenizer, shows that GreedTok achieves a lower bit per byte even when we control for either the total dataset proportion or total training tokens.
Supplementary Material: zip
Primary Area: Deep learning (e.g., architectures, generative models, optimization for deep networks, foundation models, LLMs)
Submission Number: 8744
Loading