Robust Regression Revisited: Acceleration and Improved Estimation RatesDownload PDF

21 May 2021, 20:48 (edited 21 Jan 2022)NeurIPS 2021 PosterReaders: Everyone
  • Keywords: robust statistics, stochastic optimization, linear regression, acceleration
  • TL;DR: We present nearly-linear time algorithms for statistical regression problems with improved runtime or estimation guarantees over the prior state-of-the-art.
  • Abstract: We study fast algorithms for statistical regression problems under the strong contamination model, where the goal is to approximately optimize a generalized linear model (GLM) given adversarially corrupted samples. Prior works in this line of research were based on the \emph{robust gradient descent} framework of \cite{PrasadSBR20}, a first-order method using biased gradient queries, or the \emph{Sever} framework of \cite{DiakonikolasKK019}, an iterative outlier-removal method calling a stationary point finder. We present nearly-linear time algorithms for robust regression problems with improved runtime or estimation guarantees compared to the state-of-the-art. For the general case of smooth GLMs (e.g.\ logistic regression), we show that the robust gradient descent framework of \cite{PrasadSBR20} can be \emph{accelerated}, and show our algorithm extends to optimizing the Moreau envelopes of Lipschitz GLMs (e.g.\ support vector machines), answering several open questions in the literature. For the well-studied case of robust linear regression, we present an alternative approach obtaining improved estimation rates over prior nearly-linear time algorithms. Interestingly, our algorithm starts with an identifiability proof introduced in the context of the sum-of-squares algorithm of \cite{BakshiP21}, which achieved optimal error rates while requiring large polynomial runtime and sample complexity. We reinterpret their proof within the Sever framework and obtain a dramatically faster and more sample-efficient algorithm under fewer distributional assumptions.
  • Supplementary Material: pdf
  • Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
10 Replies

Loading