Upgrading VAE Training With Unlimited Data Plans Provided by Diffusion Models

19 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: probabilistic methods (Bayesian methods, variational inference, sampling, UQ, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: VAE, Diffusion Model, Data Augmentation, Distillation, Generalization, Robustness, Amortized Inference, Generative Model
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: Training a VAE on samples from a pre-trained diffusion model improves its performance on generalization, amortized inference, and its robustness.
Abstract: Variational autoencoders (VAEs) are popular models for representation learning but their encoders are susceptible to overfitting (Cremer et al., 2018) because they are trained on a finite training set instead of the true (continuous) data distribution $p_{\mathrm{data}}(\mathbf{x})$. Diffusion models, on the other hand, avoid this issue by keeping the encoder fixed. This makes their representations less interpretable, but it simplifies training, enabling accurate and continuous approximations of $p_{\mathrm{data}}(\mathbf{x})$. In this paper, we show that overfitting encoders in VAEs can be effectively mitigated by training on samples from a pre-trained diffusion model. These results are somewhat unexpected as recent findings (Alemohammad et al., 2023; Shumailov et al., 2023) observe a decay in generative performance when models are trained on data generated by another generative model. We analyze generalization performance, amortization gap, and robustness of VAEs trained with our proposed method on three different data sets. We find improvements in all metrics compared to both normal training and conventional data augmentation methods, and we show that a modest amount of samples from the diffusion model suffices to obtain these gains.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1886
Loading