Keywords: optimal stopping/switching, sequential hypothesis testing, adaptive experimentation
Abstract: In many scenarios, decision-makers must commit to long-term actions until their resolution before receiving the payoff of said actions, and usually, staying committed to such actions incurs continual costs. For instance, in healthcare, a newly-discovered treatment cannot be marketed to patients until a clinical trial is conducted, which both requires time and is also costly. Of course in such scenarios, not all commitments eventually pay off. For instance, a clinical trial might end up failing to show efficacy. Given the time pressure created by the continual cost of keeping a commitment, we aim to answer: When should a decision-maker break a commitment that is likely to fail—either to make an alternative commitment or to make no further commitments at all? First, we formulate this question as a new type of optimal stopping/switching problem called the optimal commitment problem (OCP). Then, we theoretically analyze OCP, and based on the insights we gain, propose a practical algorithm for solving it. Finally, we empirically evaluate the performance of our algorithm in running clinical trials with subpopulation selection.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: General Machine Learning (ie none of the above)
27 Replies
Loading