A Multimodal Deep Learning Framework for Locating Nomadic Pastoralists to Strengthen Public Health Outreach

Published: 10 Jun 2025, Last Modified: 17 Jul 2025TerraBytes 2025 withoutproceedingsEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Nomad, Pastoralist, Health Census, Deep Learning, Global Health, Satellite Imagery
Abstract: Nomadic pastoralists are systematically underrepresented in the planning of health services and frequently missed by health campaigns due to their mobility. Previous studies have developed novel geospatial methods to address these challenges but rely on manual techniques that are too time and resource-intensive to scale on a national or regional level. To address this gap, we developed a computer vision-based approach to automatically locate active nomadic pastoralist settlements from satellite imagery. We curated labeled datasets of satellite images capturing approximately 1,000 historically active settlements in the Omo Valley of Ethiopia to train and evaluate deep learning models, studying their robustness to low spatial resolutions and limits in labeled training data. Using a novel training strategy that leveraged public road and water infrastructure data, we closed performance gaps introduced by shortages in labeled settlement data. We deployed our best model on a region spanning 5,400 square kilometers in the Omo Valley of Ethiopia, resulting in the identification of historical settlements with a 270-fold reduction in manual review volume. Our work serves as a promising framework for automating the localization of nomadic pastoralist settlements at a national scale for health campaigns and demographic surveillance.
Submission Number: 33
Loading