Algorithm Generation via Creative Ideation

ICLR 2026 Conference Submission16657 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: system algorithm design, creativity, ideation, self-reflection
Abstract: Designing system algorithms remains challenging, where the discontinuous nature of the solution space often forces system engineers to rely on generic heuristics at the expense of performance. We study whether LLMs can practically drive algorithm generation, and find that they are biased towards well-known generic designs, rather than making the creative leaps needed to navigate the discontinuous solution space. To address this limitation, we introduce MetaMuse, a framework for creative ideation built on three self-reflection principles: (1) quantifying solution diversity and usefulness in measurable performance space, rather than abstract idea space, (2) steering ideation through external stimuli, rather than internal randomness, and (3) constructing executable solutions using waypoint reasoning, rather than free-form chain-of-thought. Extensive evaluation shows that MetaMuse can generate high-performing solutions for two critical problems at a global cloud provider: cache replacement (reducing cache misses by up to 35.76%) and online bin packing (reducing bin usage by up to 30.93%).
Supplementary Material: zip
Primary Area: other topics in machine learning (i.e., none of the above)
Submission Number: 16657
Loading