LiteVAR: Compressing Visual Autoregressive Modelling with Efficient Attention and Quantization

Published: 09 Oct 2024, Last Modified: 19 Nov 2024Compression Workshop @ NeurIPS 2024EveryoneRevisionsBibTeXCC BY 4.0
Keywords: autoregressive, image generation, compression, large model
Abstract: Visual Autoregressive (VAR) has emerged as a promising approach in image generation, offering competitive potential and performance comparable to diffusion-based models. However, current AR-based visual generation models require substantial computational resources, limiting their applicability on resource-constrained devices. To address this issue, we conducted analysis and identified significant redundancy in three dimensions of the VAR model: (1) the attention map, (2) the attention outputs when using classifier free guidance, and (3) the data precision. Correspondingly, we proposed efficient attention mechanism and low-bit quantization method to enhance the efficiency of VAR models while maintaining performance. With negligible performance lost (less than 0.056 FID increase), we could achieve 85.2% reduction in attention computation, 50% reduction in overall memory and 1.5x latency reduction. To ensure deployment feasibility, we developed efficient training-free compression techniques and analyze the deployment feasibility and efficiency gain of each technique.
Submission Number: 101
Loading