Diagnosing and Remedying Knowledge Deficiencies in LLMs via Label-free Curricular Meaningful Learning

ICLR 2026 Conference Submission19580 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Deficiency Diagnosis, Data Synthesis, LLMs Reasoning
TL;DR: Diagnose the knowledge deficiencies of LLMs and remedy them with a novel approach.
Abstract: Large Language Models (LLMs) have demonstrated impressive generalization ability by learning from extensive unlabeled text. However, they still exhibit reasoning mistakes, which can affect their trustworthiness and reliability. Although users can interact with LLMs and provide diverse and comprehensive queries to expose the flaws of LLMs, obtaining sufficient and effective feedback is demanding. Furthermore, comprehensively evaluating LLMs with limited labeled samples is difficult. These make it a challenge to diagnose and remedy the deficiencies in LLMs through rich label-free user queries. To tackle this challenge and considersing that LLMs' reasoning mistakes often stem from knowledge deficiencies, we propose label-free curricular meaningful learning (LaMer), which first employs relative entropy to diagnose and quantify knowledge deficiencies of LLMs in a label-free setting. Then, LaMer adaptively synthesizes augmentation data based on deficiency severity and progressively remedies them with a curricular remedy strategy. Experiments show that LaMer effectively diagnoses and remedies knowledge deficiencies in LLMs, improving various LLMs across seven out-of-distribution (OOD) reasoning benchmarks, achieving comparable results to baselines with only 40% training data. LaMer even surpasses methods that rely on labeled data for deficiency diagnosis. In application, LaMer offers a diagnostic tool for efficient LLM development.
Supplementary Material: zip
Primary Area: foundation or frontier models, including LLMs
Submission Number: 19580
Loading