Counting Graph Substructures with Graph Neural Networks

Published: 16 Jan 2024, Last Modified: 18 Apr 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: graph neural networks, expressive power, representation learning, subgraph isomorphism, cliques, cycles, motifs, substructures, count, message-passing
Submission Guidelines: I certify that this submission complies with the submission instructions as described on
TL;DR: This paper studies the ability of message-passing graph neural networks to count graph substructures.
Abstract: Graph Neural Networks (GNNs) are powerful representation learning tools that have achieved remarkable performance in various downstream tasks. However, there are still open questions regarding their ability to count and list substructures, which play a crucial role in biological and social networks. In this work, we fill this gap and characterize the representation {and generalization} power of GNNs in terms of their ability to produce powerful representations that count substructures. In particular, we study the message-passing operations of GNNs with random node input in a novel fashion, and show how they can produce equivariant representations that are associated with high-order statistical moments. Using these representations, we prove that GNNs can learn how to count cycles, {cliques}, quasi-cliques, and the number of connected components in a graph. We also provide new insights into the generalization capacity of GNNs. Our analysis is constructive and enables the design of a generic GNN architecture that shows remarkable performance in four distinct tasks: cycle detection, cycle counting, graph classification, and molecular property prediction.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: learning on graphs and other geometries & topologies
Submission Number: 8631