Transformer-Modulated Diffusion Models for Probabilistic Multivariate Time Series Forecasting

Published: 16 Jan 2024, Last Modified: 05 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: time series forecasting, generative modeling, deep learning, diffusion model
Submission Guidelines: I certify that this submission complies with the submission instructions as described on
Abstract: Transformers have gained widespread usage in multivariate time series (MTS) forecasting, delivering impressive performance. Nonetheless, these existing transformer-based methods often neglect an essential aspect: the incorporation of uncertainty into the predicted series, which holds significant value in decision-making. In this paper, we introduce a Transformer-Modulated Diffusion Model (TMDM), uniting conditional diffusion generative process with transformers into a unified framework to enable precise distribution forecasting for MTS. TMDM harnesses the power of transformers to extract essential insights from historical time series data. This information is then utilized as prior knowledge, capturing covariate-dependence in both the forward and reverse processes within the diffusion model. Furthermore, we seamlessly integrate well-designed transformer-based forecasting methods into TMDM to enhance its overall performance. Additionally, we introduce two novel metrics for evaluating uncertainty estimation performance. Through extensive experiments on six datasets using four evaluation metrics, we establish the effectiveness of TMDM in probabilistic MTS forecasting.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: generative models
Submission Number: 2407