Multi-Head Adapter Routing for Cross-Task Generalization

Published: 21 Sept 2023, Last Modified: 02 Nov 2023NeurIPS 2023 posterEveryoneRevisionsBibTeX
Keywords: Parameter Efficient Finetuning, Multitask Learning, Transfer Learning, Natural Language Processing
TL;DR: We investigate the role of learned routing for modular PEFT methods, propose a new multihead routing function and show it leads to better performance by maximizing transfer
Abstract: Parameter-efficient fine-tuning (PEFT) for cross-task generalization consists in pre-training adapters on a multi-task training set before few-shot adaptation to test tasks. Polytropon [Ponti et al., 2023] ($\texttt{Poly}$) jointly learns an inventory of adapters and a *routing* function that selects a (variable-size) subset of adapters for each task during both pre-training and few-shot adaptation. In this paper, we investigate the role that adapter routing plays in its success and design new variants based on our findings. First, we build on the intuition that finer-grained routing provides more expressivity. Hence, we propose $\texttt{MHR}$ (Multi-Head Routing) which combines *subsets* of adapter parameters and outperforms $\texttt{Poly}$ under a comparable parameter budget; by only fine-tuning the routing function and not the adapters ($\texttt{MHR}$-$z$) we achieve competitive performance with extreme parameter efficiency. Second, we find that $\texttt{Poly}$/$\texttt{MHR}$ performance is a result of better multi-task optimization, rather than modular inductive biases that facilitate adapter recombination and local adaptation, as previously hypothesized. In fact, we find that $\texttt{MHR}$ exhibits high gradient alignment between training tasks. We find that routing is most beneficial during multi-task pre-training rather than during few-shot adaptation and propose $\texttt{MHR}$-$\mu$, which discards routing and fine-tunes the average of the pre-trained adapters on each downstream tasks. This establishes $\texttt{MHR}$-$\mu$ as an effective method for single-adapter fine-tuning. We also show that $\texttt{MHR}$-$\mu$ can be used as an effective zero-shot transfer method by training the average of the pre-trained adapters for a few additional steps on the multi-task training set: this yields gains up to 3\% on absolute accuracy w.r.t. the baselines. Code is available at <https://github.com/microsoft/mttl>.
Supplementary Material: zip
Submission Number: 5149
Loading