Scallop: From Probabilistic Deductive Databases to Scalable Differentiable ReasoningDownload PDF

Oct 08, 2021 (edited Nov 29, 2021)AIPLANSReaders: Everyone
  • Keywords: neuro-symbolic, differentiable logic programming, probabilistic database
  • TL;DR: Scalable Differentiable Reasoning Using A Probabilistic Deductive Database
  • Abstract: Deep learning and symbolic reasoning are complementary techniques for an intelligent system. However, principled combinations of these techniques are typically limited in scalability, rendering them ill-suited for real-world applications. We propose Scallop, a system that builds upon probabilistic deductive databases, to bridge this gap. On synthetic tasks involving mathematical and logical reasoning, Scallop scales significantly better without sacrificing accuracy compared to DeepProbLog, a principled neural logic programming approach. Scallop also scales to a real-world Visual Question Answering (VQA) benchmark that requires multi-hop reasoning, achieving 84.22% accuracy and outperforming two VQA-tailored models based on Neural Module Networks and transformers by 12.42% and 21.66% respectively.
1 Reply