Zero-Shot Image Compression with Diffusion-Based Posterior Sampling

ICLR 2025 Conference Submission1482 Authors

18 Sept 2024 (modified: 27 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: zeroshot, compression, diffusion models, posterior sampling
Abstract: Diffusion models dominate the field of image generation, however they have yet to make major breakthroughs in the field of image compression. Indeed, while pre-trained diffusion models have been successfully adapted to a wide variety of downstream tasks, existing work in diffusion-based image compression require task specific model training, which can be both cumbersome and limiting. This work addresses this gap by harnessing the image prior learned by existing pre-trained diffusion models for solving the task of lossy image compression. This enables the use of the wide variety of publicly-available models, and avoids the need for training or fine-tuning. Our method, PSC (Posterior Sampling-based Compression), utilizes zero-shot diffusion-based posterior samplers. It does so through a novel sequential process inspired by the active acquisition technique "Adasense" to accumulate informative measurements of the image. This strategy minimizes uncertainty in the reconstructed image and allows for construction of an image-adaptive transform coordinated between both the encoder and decoder. PSC offers a progressive compression scheme that is both practical and simple to implement. Despite minimal tuning, and a simple quantization and entropy coding, PSC achieves competitive results compared to established methods, paving the way for further exploration of pre-trained diffusion models and posterior samplers for image compression.
Supplementary Material: pdf
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1482
Loading