Keywords: point cloud, point distribution model, generative model, diffusion model
TL;DR: A diffusion model designed to generate point-based shape representations with correspondences
Abstract: We propose a diffusion model designed to generate point-based shape representations with correspondences.
Traditional statistical shape models have considered point correspondences extensively, but current deep learning methods do not take them into account, focusing on unordered point clouds instead.
Current deep generative models for point clouds do not address generating shapes with point correspondences between generated shapes.
This work aims to formulate a diffusion model that is capable of generating realistic point-based shape representations, which preserve point correspondences that are present in the training data.
Using shape representation data with correspondences derived from Open Access Series of Imaging Studies 3 (OASIS-3), we demonstrate that our correspondence-preserving model effectively generates point-based hippocampal shape representations that are highly realistic compared to existing methods. We further demonstrate the applications of our generative model by downstream tasks, such as conditional generation of healthy and AD subjects and predicting morphological changes of disease progression by counterfactual generation.
Primary Subject Area: Generative Models
Secondary Subject Area: Application: Neuroimaging
Paper Type: Methodological Development
Registration Requirement: Yes
Midl Latex Submission Checklist: Ensure no LaTeX errors during compilation., Created a single midl25_NNN.zip file with midl25_NNN.tex, midl25_NNN.bib, all necessary figures and files., Includes \documentclass{midl}, \jmlryear{2025}, \jmlrworkshop, \jmlrvolume, \editors, and correct \bibliography command., Did not override options of the hyperref package, Did not use the times package., All authors and co-authors are correctly listed with proper spelling and avoid Unicode characters., Author and institution details are de-anonymized where needed. All author names, affiliations, and paper title are correctly spelled and capitalized in the biography section., References must use the .bib file. Did not override the bibliographystyle defined in midl.cls. Did not use \begin{thebibliography} directly to insert references., Tables and figures do not overflow margins; avoid using \scalebox; used \resizebox when needed., Included all necessary figures and removed *unused* files in the zip archive., Removed special formatting, visual annotations, and highlights used during rebuttal., All special characters in the paper and .bib file use LaTeX commands (e.g., \'e for é)., Appendices and supplementary material are included in the same PDF after references., Main paper does not exceed 9 pages; acknowledgements, references, and appendix start on page 10 or later.
Latex Code: zip
Copyright Form: pdf
Submission Number: 213
Loading