EarthquakeNPP: Benchmark Datasets for Earthquake Forecasting with Neural Point Processes

26 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Point Processes, Earthquake Forecasting, Benchmarking, Datasets
Abstract: Classical point process models, such as the epidemic-type aftershock sequence (ETAS) model, have been widely used for forecasting the event times and locations of earthquakes for decades. Recent advances have led to Neural Point Processes (NPPs), which promise greater flexibility and improvements over classical models. However, the currently-used benchmark dataset for NPPs does not represent an up-to-date challenge in the seismological community since it lacks a key earthquake sequence from the region and improperly splits training and testing data. Furthermore, initial earthquake forecast benchmarking lacks a comparison to state-of-the-art earthquake forecasting models typically used by the seismological community. To address these gaps, we introduce EarthquakeNPP: a collection of benchmark datasets to facilitate testing of NPPs on earthquake data, accompanied by a credible implementation of the ETAS model. The datasets cover a range of small to large target regions within California, dating from 1971 to 2021, and include different methodologies for dataset generation. In a benchmarking experiment, we compare three spatio-temporal NPPs against ETAS and find that none outperform ETAS in either spatial or temporal log-likelihood. These results indicate that current NPP implementations are not yet suitable for practical earthquake forecasting. EarthquakeNPP also provides generative evaluation metrics, enabling broader model classes to be benchmarked and facilitating the future collaboration between the seismology and machine learning communities.
Primary Area: datasets and benchmarks
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7145
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview