Impact of Dataset Properties on Membership Inference Vulnerability of Deep Transfer Learning

26 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Membership Inference Attack, Transfer Learning, Few-shot Learning, Image Classification
TL;DR: We derive a power-law relationship between data set properties and vulnerability to membership inference and support it with extensive experiments.
Abstract: We analyse the relationship between privacy vulnerability and dataset properties, such as examples per class and number of classes, when applying two state-of-the-art membership inference attacks (MIAs) to fine-tuned neural networks. We derive per-example MIA vulnerability in terms of score distributions and statistics computed from shadow models. We introduce a simplified model of membership inference and prove that in this model, the logarithm of the difference of true and false positive rates depends linearly on the logarithm of the number of examples per class. We complement the theoretical analysis with empirical analysis by systematically testing the practical privacy vulnerability of fine-tuning large image classification models and obtain the previously derived power law dependence between the number of examples per class in the data and the MIA vulnerability, as measured by true positive rate of the attack at a low false positive rate. Finally, we fit a parametric model of the previously derived form to predict true positive rate based on dataset properties and observe good fit for MIA vulnerability on unseen fine-tuning scenarios.
Supplementary Material: zip
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6070
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview