Keywords: Online 3D Segmentation, Embodied Intelligence
Abstract: Online, real-time, and fine-grained 3D segmentation constitutes a fundamental capability for embodied intelligent agents to perceive and comprehend their operational environments. Recent advancements employ predefined object queries to aggregate semantic information from Vision Foundation Models (VFMs) outputs that are lifted into 3D point clouds, facilitating spatial information propagation through inter-query interactions.
Nevertheless, perception, whether human or robotic, is an inherently dynamic process, rendering temporal understanding a critical yet overlooked dimension within these prevailing query-based pipelines. This deficiency in temporal reasoning can exacerbate issues such as the over-segmentation commonly produced by VFMs, necessitating more handcrafted post-processing. Therefore, to further unlock the temporal environmental perception capabilities of embodied agents, our work reconceptualizes online 3D segmentation as an instance tracking problem (AutoSeg3D). Our core strategy involves utilizing object queries for temporal information propagation, where long-term instance association promotes the coherence of features and object identities, while short-term instance update enriches
instant observations. Given that viewpoint variations in embodied robotics often lead to partial object visibility across frames, this mechanism aids the model in developing a holistic object understanding beyond incomplete instantaneous views. Furthermore, we introduce spatial consistency learning to mitigate the fragmentation problem inherent in VFMs, yielding more comprehensive instance information for enhancing the efficacy of both long-term and short-term temporal learning. The temporal information exchange and consistency learning facilitated by these sparse object queries not only enhance spatial comprehension but also circumvent the computational burden associated with dense temporal point cloud interactions. Our method establishes a new state-of-the-art, surpassing ESAM by 2.8 AP on ScanNet200 and delivering consistent gains on ScanNet, SceneNN, and 3RScan datasets, corroborating that identity-aware temporal reasoning is a crucial, previously underemphasized component for robust 3D segmentation in real-time embodied intelligence. Code is at https://github.com/AutoLab-SAI-SJTU/AutoSeg3D.
Supplementary Material: zip
Primary Area: Applications (e.g., vision, language, speech and audio, Creative AI)
Submission Number: 2965
Loading