Towards Learning Universal Hyperparameter Optimizers with TransformersDownload PDF

Published: 31 Oct 2022, Last Modified: 12 Mar 2024NeurIPS 2022 AcceptReaders: Everyone
Keywords: OptFormer, Transformer, hyperparameter, optimization, offline, tuning, meta, learning, meta-learning, bayesian, optimization, blackbox
TL;DR: Given an offline dataset containing hyperparameter optimization trajectories, we seek to train a Transformer over this dataset to learn useful policies and function regressors.
Abstract: Meta-learning hyperparameter optimization (HPO) algorithms from prior experiments is a promising approach to improve optimization efficiency over objective functions from a similar distribution. However, existing methods are restricted to learning from experiments sharing the same set of hyperparameters. In this paper, we introduce the OptFormer, the first text-based Transformer HPO framework that provides a universal end-to-end interface for jointly learning policy and function prediction when trained on vast tuning data from the wild, such as Google’s Vizier database, one of the world’s largest HPO datasets. Our extensive experiments demonstrate that the OptFormer can simultaneously imitate at least 7 different HPO algorithms, which can be further improved via its function uncertainty estimates. Compared to a Gaussian Process, the OptFormer also learns a robust prior distribution for hyperparameter response functions, and can thereby provide more accurate and better calibrated predictions. This work paves the path to future extensions for training a Transformer-based model as a general HPO optimizer.
Supplementary Material: pdf
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 3 code implementations](
15 Replies