Bag of Image Patch Embedding Behind the Success of Self-Supervised Learning

Published: 13 Nov 2023, Last Modified: 13 Nov 2023Accepted by TMLREveryoneRevisionsBibTeX
Abstract: Self-supervised learning (SSL) has recently achieved tremendous empirical advancements in learning image representation. However, our understanding of the principle behind learning such a representation is still limited. This work shows that joint-embedding SSL approaches learn a representation of image patches, which reflects their co-occurrence. Such a connection to co-occurrence modeling can be established formally, and it supplements the prevailing invariance perspective. We empirically show that learning a representation for fixed-scale patches and aggregating local patch representations as the image representation achieves similar or even better results than the baseline methods. We denote this process as {\it BagSSL}. Even with $32\times 32$ patch representation, BagSSL achieves $62\%$ top-1 linear probing accuracy on ImageNet. On the other hand, with a multi-scale pretrained model, we show that the whole image embedding is approximately the average of local patch embeddings. While the SSL representation is relatively invariant at the global scale, we show that locality is preserved when we zoom into local patch-level representation. Further, we show that patch representation aggregation can improve various SOTA baseline methods by a large margin. The patch representation is considerably easier to understand, and this work makes a step to demystify self-supervised representation learning.
License: Creative Commons Attribution 4.0 International (CC BY 4.0)
Submission Length: Regular submission (no more than 12 pages of main content)
Changes Since Last Submission: N/A
Supplementary Material: pdf
Assigned Action Editor: ~Jinwoo_Shin1
Submission Number: 1271