mCLM: A Modular Chemical Language Model that Generates Functional and Makeable Molecules

ICLR 2026 Conference Submission15651 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: molecule-language multimodality, language model, molecule tokenization, molecule generation
TL;DR: We propose mCLM: a bilingual, modular Chemical-Language Model that understands both natural language descriptions of functions and molecular blocks; mCLM front-loads synthesizability while improving the functions of molecules in a principled manner.
Abstract: Despite their ability to understand chemical knowledge, large language models (LLMs) remain limited in their capacity to propose novel molecules with desired functions (e.g., drug-like properties). In addition, the molecules that LLMs propose can often be challenging to make, and are almost never compatible with automated synthesis approaches. To better enable the discovery of functional small molecules, LLMs need to learn a new molecular language that is more effective in predicting properties and inherently synced with automated synthesis technology. Current molecule LLMs are limited by representing molecules based on atoms. In this paper, we argue that just like tokenizing texts into meaning-bearing (sub-)word tokens instead of characters, molecules should be tokenized at the level of functional building blocks, i.e., parts of molecules that bring unique functions and serve as effective building blocks for real-world automated laboratory synthesis. This motivates us to propose mCLM, a modular Chemical-Language Model that comprises a bilingual language model that understands both natural language descriptions of functions and molecular blocks. mCLM front-loads synthesizability considerations while improving the predicted functions of molecules in a principled manner. Experiments on 430 FDA-approved drugs showed that mCLM is capable of significantly improving chemical functions critical to determining drug potentials. mCLM, with only 3B parameters, also achieves improvements in synthetic accessibility relative to 7 other leading generative AI methods including GPT-5. When tested on 122 out-of-distribution medicines using only building blocks/tokens that are compatible with automated modular synthesis, mCLM outperforms all baselines in property scores and synthetic accessibility. mCLM can also reason on multiple functions and iteratively self-improve to rescue drug candidates that failed late in clinical trials (“fallen angels”).
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Submission Number: 15651
Loading