Keywords: human trajectory prediction, interaction modeling
Abstract: Interactive human motions and the continuously changing nature of intentions pose significant challenges for human trajectory prediction. In this paper, we present a neuralized Markov random field (MRF)-based motion evolution method for probabilistic interaction-aware human trajectory prediction. We use MRF to model each agent's motion and the resulting crowd interactions over time, hence is robust against noisy observations and enables group reasoning. We approximate the modeled distribution using two conditional variational autoencoders (CVAEs) for efficient learning and inference. Our proposed method achieves state-of-the-art performance on ADE/FDE metrics across two dataset categories: overhead datasets ETH/UCY, SDD, and NBA, and ego-centric JRDB. Furthermore, our approach allows for real-time stochastic inference in bustling environments, making it well-suited for a 30FPS video setting. We open-source our codes at: https://github.com/AdaCompNUS/NMRF_TrajectoryPrediction.git
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4361
Loading