Making Better Decision by Directly Planning in Continuous ControlDownload PDF

Published: 01 Feb 2023, Last Modified: 01 Mar 2023ICLR 2023 posterReaders: Everyone
Keywords: Model-based Reinforcement Learning, Reinforcement Learning, Planning, Policy Optimization
Abstract: By properly utilizing the learned environment model, model-based reinforcement learning methods can improve the sample efficiency for decision-making problems. Beyond using the learned environment model to train a policy, the success of MCTS-based methods shows that directly incorporating the learned environment model as a planner to make decisions might be more effective. However, when action space is of high dimension and continuous, directly planning according to the learned model is costly and non-trivial. Because of two challenges: (1) the infinite number of candidate actions and (2) the temporal dependency between actions in different timesteps. To address these challenges, inspired by Differential Dynamic Programming (DDP) in optimal control theory, we design a novel Policy Optimization with Model Planning (POMP) algorithm, which incorporates a carefully designed Deep Differential Dynamic Programming (D3P) planner into the model-based RL framework. In D3P planner, (1) to effectively plan in the continuous action space, we construct a locally quadratic programming problem that uses a gradient-based optimization process to replace search. (2) To take the temporal dependency of actions at different timesteps into account, we leverage the updated and latest actions of previous timesteps (i.e., step $1, \cdots, h-1$) to update the action of the current step (i.e., step $h$), instead of updating all actions simultaneously. We theoretically prove the convergence rate for our D3P planner and analyze the effect of the feedback term. In practice, to effectively apply the neural network based D3P planner in reinforcement learning, we leverage the policy network to initialize the action sequence and keep the action update conservative in the planning process. Experiments demonstrate that POMP consistently improves sample efficiency on widely used continuous control tasks. Our code is released at
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Reinforcement Learning (eg, decision and control, planning, hierarchical RL, robotics)
TL;DR: Directly using the environment model to do the planning might be an efficient way when making decision. We propose a novel POMP algorithm with a D3P planner module to achieve the efficient planning in the continuous action space control problem.
26 Replies