Abstract Meaning Representation-Based Logic-Driven Data Augmentation for Logical ReasoningDownload PDF

Anonymous

16 Feb 2024ACL ARR 2024 February Blind SubmissionReaders: Everyone
Abstract: Combining large language models with logical reasoning enhances their capacity to address problems in a robust and reliable manner. Nevertheless, the intricate nature of logical reasoning poses challenges to gathering reliable data from the web for building comprehensive training datasets, subsequently affecting the performance on downstream tasks. To address this, we introduce a novel logic-driven data augmentation approach, AMR-LDA. AMR-LDA converts the original text into an Abstract Meaning Representation (AMR) graph, a structured semantic representation that encapsulates the logic structure of the sentence, upon which operations are performed to generate logically modified AMR graphs. The modified AMR graphs are subsequently converted back into text to create augmented data. Notably, our methodology is architecture-agnostic and enhances both generative large language models, such as GPT-3.5 and GPT-4, through prompt augmentation, and discriminative large language models through contrastive learning with logic-driven data augmentation. Empirical evidence underscores the efficacy of our proposed method with improvement in performance across seven downstream tasks, such as reading comprehension requiring logical reasoning, textual entailment, and natural language inference. Furthermore, our method leads on the ReClor leaderboard\footnote{\url{https://eval.ai/web/challenges/challenge-page/503/leaderboard/1347}}. The source code and data are publicly available\footnote{\url{https://bit.ly/3SuiRVi}}.
Paper Type: long
Research Area: Semantics: Sentence-level Semantics, Textual Inference and Other areas
Contribution Types: NLP engineering experiment, Publicly available software and/or pre-trained models, Data resources, Data analysis
Languages Studied: English
0 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview