Keywords: equivariance, loss landscape, optimization, group theory, parameter symmetry, symmetry
TL;DR: We prove that the interaction of parameter symmetry and equivariance constraints can create critical points and minima in the loss landscape.
Abstract: Equivariant neural networks have proven to be effective for tasks with known underlying symmetries. However, optimizing equivariant networks can be tricky and best training practices are less established than for standard networks. In particular, recent works have found small training benefits from relaxing equivariance constraints. This raises the question: do equivariance constraints introduce fundamental obstacles to optimization? Or do they simply require different hyperparameter tuning? In this work, we investigate this question through a theoretical analysis of the loss landscape geometry. We focus on networks built using permutation representations, which we can view as a subset of unconstrained MLPs. Importantly, we show that the parameter symmetries of the unconstrained model has nontrivial effects on the loss landscape of the equivariant subspace and under certain conditions can provably prevent learning of the global minima. Further, we empirically demonstrate in such cases, relaxing to an unconstrained MLP can sometimes solve the issue. Interestingly, the weights eventually found via relaxation corresponds to a different choice of group representation in the hidden layer. From this, we draw 3 key takeaways. (1) By viewing the unconstrained version of an architecture, we can uncover hidden parameter symmetries which were broken by choice of constraint enforcement (2) Hidden symmetries give important insights on loss landscapes and can induce critical points and even minima (3) Hidden symmetry induced minima can sometimes be escaped by constraint relaxation and we observe the network jumps to a different choice of constraint enforcement. Effective equivariance relaxation may require rethinking the fixed choice of group representation in the hidden layers.
Supplementary Material: zip
Primary Area: Theory (e.g., control theory, learning theory, algorithmic game theory)
Submission Number: 17145
Loading