Neural Routing by MemoryDownload PDF

Published: 09 Nov 2021, Last Modified: 05 May 2023NeurIPS 2021 PosterReaders: Everyone
Keywords: convolutional neural networks, routing, memory
Abstract: Recent Convolutional Neural Networks (CNNs) have achieved significant success by stacking multiple convolutional blocks, named procedures in this paper, to extract semantic features. However, they use the same procedure sequence for all inputs, regardless of the intermediate features. This paper proffers a simple yet effective idea of constructing parallel procedures and assigning similar intermediate features to the same specialized procedures in a divide-and-conquer fashion. It relieves each procedure's learning difficulty and thus leads to superior performance. Specifically, we propose a routing-by-memory mechanism for existing CNN architectures. In each stage of the network, we introduce parallel Procedural Units (PUs). A PU consists of a memory head and a procedure. The memory head maintains a summary of a type of features. For an intermediate feature, we search its closest memory and forward it to the corresponding procedure in both training and testing. In this way, different procedures are tailored to different features and therefore tackle them better. Networks with the proposed mechanism can be trained efficiently using a four-step training strategy. Experimental results show that our method improves VGGNet, ResNet, and EfficientNet's accuracies on Tiny ImageNet, ImageNet, and CIFAR-100 benchmarks with a negligible extra computational cost.
Supplementary Material: pdf
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
12 Replies